Iterative methods for solving nonlinear equations with finitely many roots in an interval
نویسندگان
چکیده
منابع مشابه
New iterative methods with seventh-order convergence for solving nonlinear equations
In this paper, seventh-order iterative methods for the solution ofnonlinear equations are presented. The new iterative methods are developed byusing weight function method and using an approximation for the last derivative,which reduces the required number of functional evaluations per step. Severalexamples are given to illustrate the eciency and the performance of the newiterative methods.
متن کاملAN ITERATIVE METHOD WITH SIX-ORDER CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS
Modification of Newtons method with higher-order convergence is presented. The modification of Newtons method is based on Frontinis three-order method. The new method requires two-step per iteration. Analysis of convergence demonstrates that the order of convergence is 6. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newtons method and ...
متن کاملAn Iterative Scheme for Solving Nonlinear Equations with Monotone Operators
An iterative scheme for solving ill-posed nonlinear operator equations with monotone operators is introduced and studied in this paper. A discrete version of the Dynamical Systems Method (DSM) algorithm for stable solution of ill-posed operator equations with monotone operators is proposed and its convergence is proved. A discrepancy principle is proposed and justified. A priori and a posterior...
متن کاملA Class of Iterative Methods for Solving Nonlinear Projection Equations
A class of globally convergent iterative methods for solving nonlinear projection equations is provided under a continuity condition of the mapping F. When Fis pseudomonotone, a necessary and sufficient condition on the nonemptiness of the solution set is obtained.
متن کاملFifth-order iterative methods for solving nonlinear equations
In this paper, we suggest and analyze a new two-step iterative method for solving nonlinear equation f(x) = 0 by rewriting the given nonlinear equation as a coupled system of equations and using the Taylor series. It is shown that this new iterative method is of fifth-order. Several examples are given to illustrate its performance and efficiency. Comparison with other methods is also given. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2012
ISSN: 0377-0427
DOI: 10.1016/j.cam.2012.02.037